

Dfn: Line LCC² given by solutions of the equation $ax + by + c = 0$, $(x,y) \in \mathbb{C}^2$ $a, b, c \in \mathbb{C}$ $(a,b) \neq (0,0)$. Prop: P_1 , $P_2 \in \mathbb{C}^2$ distinct. Then \exists ! Line passing through them. equation of line is given by: $\det\begin{pmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{pmatrix} = 0$ P_{TDP} : L.O.L, in \mathbb{C}^2 . Then one of these is true: $L_1 - L_2$ \cdot \cup_{1} \cap \cup_{2} = {P}, pe \mathfrak{a}' , \longrightarrow \cdot L₁ \cap L₂ = ϕ (parallel) Dfn: Conic C C Q² is a plane Curve given by $q(x,y) = 0x^2 + bxy + cy^2 + dx + ey + f = 0$ $(a_1b_2c) + (0,0,0).$ Irreducible: if polynomial does not factor. Rem: Reducible conic: $(2x^2 + bxy + cy^2 + dx + ey + f = (a_1x + p_1y + Y_1)(a_2x + p_2y + Y_2)$ = union of two lines. J) (in \mathbb{R}^2 : (nondeg) ellipse and other degenerate cases. Prop: L a line and C a conic. Then either C= LUL2 for some line Lz (C is reducible) or <mark>(LNC) < 2.</mark> Dfn: Plane curve CCC² given by equation $p(x,y) = 0$, $p(x,y)$ is non-constant poly. 1.2 Projective Curves Dfn: Complex projective line $\mathbb{P}^1 = (\mathbb{C}^2 \setminus (0,0)) / \gamma$ $x \wedge 3x \vee 0 \neq 36$. where homogeneous Coordinates: [x:y] = [xx: Ay]. Rem: $[x:y] \in \mathbb{P}^1$ gives line $0 \times +by = 0 \subset \mathbb{C}^2$ through origin. \mathbb{P}^1 = C "with an extra point at infinity". $\boxed{\text{Dfn:}$ Complex projective plane $\boxed{p^2 \cdot (\mathbb{C}^3 \setminus (0,0,0))}/\nu}$ where $(x,y,z) \sim (x,x,y,z)$ \forall 0 \neq $\lambda \in \mathbb{C}$.

 $[x:y:z] = [x:z:az:az]$

 $Cor: \mathbb{P}^2 = \mathbb{C}^2$ with a disjoint \mathbb{P}^1 (line at infinity)

Dfn: Projective curve CCP2 given by the equation $p(x,y,z) = 0$, where p is a nonzero homogeneous polynomial.

Dfn: Line LCP² given by solutions of the equation $Qx + by + Cz = 0$ $[x \cdot y \cdot z] \in \mathbb{R}^2$ where $(a,b,c) \neq (0,0,0)$.

 $\boxed{\mathsf{Prop}: P, Q \in \mathbb{R}^2$, $P \neq Q$. Then $\boxed{3!}$ line passing through P and Q $P = [x_1 : y_1 : z_1]$, $Q = [x_2 : y_2 : z_2]$, equation is given by:

det $\begin{pmatrix} x & y & z \\ x_1 & y_1 & z_1 \\ z_2 & z_1 & z_2 \end{pmatrix} = 0$

Prop: $L_1, L_2 \subset \mathbb{P}^2$. Then either $L_1 = L_2$ or $\lfloor L_1 \cap L_2 \rfloor = 1$.

```
DIn: Conic CCP<sup>2</sup> is given by solutions of
     0x^2 + bxy + cy^2 + dxz + eyz + fz^2 = 0where (a, b, c, d, e, f) \neq (0, 0, 0, 0, 0)
```
Prop: $L, C \subset \mathbb{P}^2$. Then either $C = LUL_2$ for some L_7 , or $\left\lfloor \frac{\text{Loc}}{\text{Loc}} \right\rfloor = \left\lfloor \frac{\text{c}}{\text{c}} \right\rfloor$

1.3 Projective Transformations

Affine transformation: $C^2 \rightarrow C^2$: $T(x) = Ax + B$, where $A \in GL_2(\mathbb{C})$ and B a translation vector. b Euclidean: = A Orthogonal

Projective Transformation: $\mathbb{P}^2 \rightarrow \mathbb{P}^2$: $T(x) : MX, M \in Gl_{3}(\mathbb{C}).$ $PGL_2(\mathbb{C}) = \frac{GL_3(\mathbb{C})}{\mathbb{C}^*}$

identity map = $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ λ = 0

Thm: P_1 , P_2 , P_3 , P_4 $\in \mathbb{P}^2$, such that no three are collinear. Then 3 projective transformation $\phi: \mathbb{P}^2 \rightarrow \mathbb{P}^2$ $s.t.$

$$
\begin{array}{ll}\n\phi(P_1) = [1:0:0] & \phi(P_3) = [0:0:1]\n\phi(P_2) = [0:1:0]\n\end{array}
$$

P; = [x; : y; : zi]. Then $\begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{pmatrix}$ is a projective trans. $giving \quad \varphi([1:0:0]) = P_1, \quad \varphi([0:1:0]) = P_2, \quad \varphi([0:0:1]) = P_3.$

Thm: P1,..., P5 C IP2 distinct, and no 3 collinear. Then 3! conic passing through them.

1.4 Classification of Conics

Slides show how to find such a transformation.

eqn of conic CCP^2 , $ax^2 + bxy + cy^2 + dxz + eyz + fz^2 = o$ can be written in symmetric matrix fam:

$$
B = \begin{pmatrix} a & b/2 & d/2 \\ b/2 & c & e/2 \\ d/2 & e/2 & f \end{pmatrix}
$$

Prop: conic $CCIP^2$ is *irreducible* iff $del(B) \neq 0$.

Thm (Intersection of Conics)

Suppose C, C' C IP² are two unequal irreducible Conics. Then ISICnc'ls4.

 $Drn: \mathbb{C} \subset \mathbb{P}^2$ an irreducible curve, PEC is $smooth$ if the gradient $\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial x} \right) \Big|_{p}$ \neq (0,0,0)

 $\frac{\partial F_n: f(x, y, z)}{\partial x}$ irred. Curve $\leq P^2$, $p = [a : p : Y]$ a smooth point.
Then the *tangent line at* $P:$
Then the *tangent line at* $P:$ Then the <mark>tangent line at P:</mark>
3f leasent of features of least part of the say f(p) p>l

 $\frac{\partial f}{\partial t}$ (a, β , γ) $\frac{\partial f}{\partial t}$ + (r, β , α) $\frac{36}{56}$ + (r, β , α) $\frac{36}{56}$ + $\frac{36}{56}$ + $\frac{36}{56}$ + $\frac{36}{56}$ + $\frac{36}{56}$ + $\frac{36}{56}$

Lem: an irreducible conic is smooth.

 $\frac{\text{Dfn:}}{\text{C}_1}$, $\text{C}_2 \subset \mathbb{P}^2$ curves intersecting at P. This intersection
is called *fransverse* if $\overline{\textcircled{\textcirc}}$ P is smooth in both c and Cz $\overline{\textcircled{\textcirc}}$ $\overline{\textcircled{\textcirc}}$ and $\$ 2 Tangent lines of P in C, and Cz differ.

Prop: LCP² a line and C an irreducible conic. Then either L is tangent to C (ILNC|=1), or $\bigoplus_{\mathcal{P}} P \in C \Leftrightarrow \text{mult}_P(c) \ge 1$
L intersects C transversely at 2 points. $\bigoplus_{\mathcal{P}} P$ is a singular point $\Leftrightarrow w$

Prop: C₁, C₂ C^{ne} distinct, irred. conics. Then prop C₁,C₂ distinct, irred curves in IP² and they intersect transversely at all points \Leftrightarrow there p $\in C_1 \cap C_2$. Then they intersect transversely at all points \Leftrightarrow there are Ψ intersection points.

2.2 Bezout's Theorem

 $Thm : f(x, y)$ nonzero homogeneous poly of deg d. Then $f(x,y) = 0$ in \mathbb{P}^1 consists of d points counted with multiplicity. Prop: $f(x,y,z)$ hom. poly. If the system

Bezout's Theorem

Then the solutions of the system $\left\{\begin{array}{l} f(x,y,z)=0 \\ y(x,y,z)=0 \end{array}\right.$ deg (f) deg(g) points counted with multiplicity.

points counted with multiplicity

Rem: common factor \Rightarrow infinitely many solutions (in IP²)

2.1 Smoothness, Tangents and Transversality **Den** (Intersection multiplicity of P) Assume P=[0:0:1]: R = $\mathbb{C}[\bar{x}, \bar{y}]_{(0,0)}$: = commutative ring of quotients of
polynomials $\frac{\alpha(\bar{x}, \bar{y})}{b(\bar{x}, \bar{y})}$ where $b(0, 0) \neq 0$. I CR := ideal generated by $f(\tilde{x},\tilde{y},t)$ and $g(\tilde{x},\tilde{y},t)$.

S*mooth* curve: P smooth <code>VPEC.</code> Smooth intersection multiplicity = (f,g)_p := dim \mathbb{C} (R/I) \mathbb{S} and \mathbb{C} and \mathbb{S} and \mathbb{S} or use $R = CL \times 31$:= ring of power series

 $\overline{(3)} \Rightarrow (f, gh)_p : (f,g)_p + (f,h)_p$ 3 It $h(p) + o_{\text{then}} (f, gh)_p = (f, g)_p$ Lem: a line is smooth $\overline{\Theta}$ Intersection at p transverse \Leftrightarrow $\overline{\Theta}$ Θ , $\overline{\Theta}$

Rem: transverse V intersection points \Rightarrow $|C_1 \cap C_2| = d_1 d_2$

Write an irreducible curve $C \subset \mathbb{P}^2$ of degreed as
 $\mathcal{R}^d h_o(x,y) + \mathcal{R}^{d-1} h_i(x,y) + \cdots + h_d(x,y) = 0$

 $DFn: P = [0:0:1]$. Multiplicity $mult_p(C)$ is the smallest n such that $h_n(x,y)$ is nonzero.

 $\begin{array}{cc} \mathcal{O} & \mathsf{P} \text{ is a singular point} & \Leftrightarrow \text{mult}_{\mathsf{P}}(\mathsf{c}) \rightarrow \mathsf{z} \end{array}$ o

 $(C_1 \cdot C_2)$, \rightarrow mult_p $(C_1) \cdot$ multp (C_2)

2.3. Applications of Bezout's Theorem

Prop : $P_1, P_2 \in \mathbb{R}^2$ distinct. \exists ! line passing through them.

Prop: $P_1,...,P_S \in \mathbb{R}^2$ distinct, no four contained in a line. Then 3! Conic passing through them.

Prop : let $C \subset \mathbb{P}^2$ be irred curve, deg $\neg r \cdot T$ hen C has at most 3 singular points

dim $(Sd) = \frac{(d+1)(d+2)}{2}$ are collinear

 $DFn: \Sigma$ a finite set of points. Then $S_d(\Sigma) := \{ \{ \in S_d \mid f(p) = 0 \} \}$

"∑ imposes <mark>independent conditions</mark> on Sd ⇔ $dim S_d(\Sigma) = dim S_d - i \Sigma$.

note: $\dim S_d(\Sigma) \geq \dim S_d - |\Sigma|$.

 $\dim S_1 = 3$

- P imposes i.c. on S.
- P, Q impose $i \cdot c$ on $5 \cdot 5$ $p \neq Q$
- P. Q.R impose i.c. \iff P. Q.R are not collinear.
- 34 points do not impose i.c.s.

 $dim S_2 = 6$

- \bullet $1, \ldots, 3$ points impose ics \Leftrightarrow distinct
- 4 points impose ics \Leftrightarrow distinct and not collinear
- G points impose ics ⇔ do not lie on a conic
- $77 +$ fail to impose ics.

 $Thm : 5$ points impose i.c.s on S_2 (i.e. $3!$ conic passing through them) \Leftrightarrow no 4 are collinear

See Slides for finding i.c. Criteria.

Prop Σ \subset IP².

- <mark>③</mark> suppose a→d points lie on a line L given by $f(x,y,z) = 0$. Then $S_d(\Sigma) = f \cdot S_{d-1}(\Sigma \setminus L)$
- ² Suppose a > 2d points lie on an irreducible conic C given by $f(x,y,z) = 0$. Then $S_d(\Sigma) = f \cdot S_{d-2}(\Sigma \setminus C)$.

 $Thm: P_1, \ldots, P_8 \n\in \mathbb{P}^2$ distinct, and suppose at most 3 lie on a line and at most 6 lie on an irred. conic. Then P_1, \ldots, P_8 impose ics on S_3 .

2.4 Points on Curves 2.4 Thm: (Chasles) C1, C2 cubics intersecting at 9 distinct points , P1,..., P9. Then any cubic
passing through P1,..., P₈ passes through P9.

Thm: (Pascal) Let C be an irreducible Conic and $P_1, P_2, P_3, Q_1, Q_2, Q_3$ distinct points on C. Then $\frac{S_d}{S_d}$:= space of homogeneous degree d polynomials Ri RQ.nP3Q3, Rz = PzQ.nPzQz , and Rz= PzQ3nPiQz
dim(Sd) = $\frac{(d+1)(d+2)}{2}$

3. 1 Inflection points

Rem: $C \subset \mathbb{P}^2$ curve, L line intersecting C at smooth point.
point. $(L \cdot C)_D \ge 2 \Leftrightarrow L$ is tangent at P.

Dfn: PEC is called *inflection point* if it is smooth ^{y (}nodal) 2y²=x²
and (L·C)p>x3, L = tangent at p. $(L \cdot C)_{P} \rightarrow 3$, $L =$ tangent at P.

 $DFn: f(x,y,*)$ hom poly Hessian: $Hess(f) = det \left(\frac{f_{xx} - f_{yy} - f_{yy}}{f_{xx}} \right)$ $f_{ij} = \frac{\partial^2 f}{\partial i \partial j}$ $x (2y + x^2) = 0$ $x y (x + y)$

Thm (Hess. Criterion): Let PE R^2 satisfy $F(P) = Hers(F)(P) = 0$ If PE C, $C = F(x,y, z)$ smooth, then P is an inflection $_{point.}$ \Rightarrow $(f \cdot$ Hess(f))_p = 1 \Leftrightarrow $(L \cdot f)$ _p = 3 , L = tangent at P.

Prop: Let f have no linear factors. Then f = 0 has finitely many inflection points \Rightarrow Hess (f) and f have no common factors.

Prop: $C \subset \mathbb{P}^2$ smooth curve, $\text{deg } \overline{z}$ as Then C has at least one inflection point. The state of the A B +P. L₁ tangent to A, intersects P transversely

 P_{roo} C C \mathbb{P}^2 Smooth cubic. Then C has \mathbb{q} distinct inflection points. A the control of the co

3.2 : Classification of Cubics

Rem: any line $L \subset \mathbb{R}^2$ is projectively equivalent to $\tau = 0$

 Thm (Weierstrass form) : Let $CCIP²$ be a smooth cubic. Then 3 projective transformation which takes it to $\begin{array}{ccc} \text{Prop:} & A, B, C \in E$, and <mark>OEE an inflection point-</mark>
 $y^2 z = \chi^3 + 0 \chi z^2 + b z^3$ Then A,B,C lie on a line \Leftrightarrow A+B+C=O

Thm A weierstrass $\frac{1}{2}$ weierstrass $\frac{1}{2}$ ax $\frac{1}{2}$ ax $\frac{1}{2}$ is Prop OEE an inflection point and PEE The inverse $\frac{1}{2}$ and PEE The inverse $\Delta = -16(4a^3 + 27b^2) + 0$

Rem: $\triangle = 0$ \Leftrightarrow π^3 + $ax\epsilon^2$ + $b\epsilon^3$ has a repeated root. A is an inflection point.

 10 mm (Legendre form): $CCIP^2$ smooth cubic. Then 3 Denote third point on line OP by \bar{P} projective transformation which takes it to the form y^2 = $x(x - z)(x - 2z)$ and $y^2 = x(x - z)(x - 2z)$

for $\lambda \neq 0, 1$.

 DPn : The j-invariant of $y^2z = x^3 + a x^2 + b z^3$ is j = 1728 $\frac{4a^3}{4a^3 + 27b^2}$

 $(\iota \cdot c)_p$ \rightarrow 2 \Leftrightarrow L is tangent at P. Thm CCCP² singular irreducible cubic. Then 3 projective transformation taking C to one of the following forms:
① <mark>(nodal)</mark> zy² = x²(x+a)

- . L_l: = AB. If A=B, Li = tangent line at A.
. Line = {A,B,P} counted w/ multiplicity. Degen. cases:
	-
	-
	- $A \neq B = P$. L_i tangent to P, intersects A transversely
- $A = B = P$. L_i tangent to A, A an inflection point.
	-
-

 \Rightarrow E forms an abelian group.

 A, B, C lie on a line $A + B + C = 0$

 $-PEE$ is the third point on line OP.

Prop: OCE an inflection point, AEE s.t $3A = 0$. Then

4.1 Elliptic curves over other Fields **4.3** Topology of Curves

- $\frac{Dfn}{k}$ k a field. CCP² given by f(x,y, x) = 0. Then Thm every real 2D connected, compact, oriented compact oriented compact oriented compact oriented
- Rem: Cubic smooth over IFp iff $p \nmid \Delta$

Thm (Mordell): $E(\mathbb{Q}) \geq \mathcal{U}^{\text{rank}} \mathcal{U}/q_{1}\mathcal{U} \times \ldots \times \mathcal{U}/q_{n}\mathcal{U}$

- Thm (Failings): $CC \nP_Q^2$ smooth curve deg d ν . Then CCQ) is finite.
- $Drn:$ G abelian, a,b ϵ G. Discrete logarithm: logbae \mathcal{U} $s + a : b^{\log_{b}a}$.

Prop : $E: y^2 + x^3 + ax^2 + bx^3$. Then $E(\mathbb{F}_p) \leq 2p+1$.

4.2. Rational Curves

- $DPn: C \subset \mathbb{R}^2$ is **rational** if $\overline{3}$ non-constant map $\mathbb{P}^1 \rightarrow \mathbb{P}^2$ $[a:b] \mapsto [p(a,b): q(a,b): r(a,b)]$ for some hom. poly of the same deg zil, Whose image is contained in C.
- Prop C rational \Leftrightarrow \exists PE C(C(t)) with nonconstant coords.
- Prop : C irred. + rational \Rightarrow $\mathbb{P}^1 \rightarrow \mathbb{C}$ surjective
- Prop: C irred conic \Rightarrow 3 iso $\mathbb{P}^1 \rightarrow \mathbb{C}$ \Rightarrow C rational
- $Prop: C$ irred. Singular Cubic $\Rightarrow C$ rational cuspidal: $[a:b] \mapsto [a^2b:a^3:b^3]$ nodal : $[a:b] \mapsto [a^{2}b-b^{3} : a^{3} - ab^{2} : b^{3}]$

Prop: Legendre cubic is not rational \Rightarrow smooth cubics are not rational.

manifold is homeomorphic to a compact, oriented surface of genus $g \rightarrow o$

Thm (Genus-degree formula)

Prop: $E(K)$ an abelian group. $C \subset \mathbb{R}^2$ smooth curve of deg d. Then C is homeomorphic to a compact, oriented surface of genus <mark>q = (d-1)(d-2)</mark>

relative to quotient topology

5.1 Noetherian Rings Dfn: Ring noetherian if all its ideals are finitely generated Prop: R noetherian, ICR ideal = R/I Noetherian. n_m R Noetherian Every ascending chain of ideals stabilizes Every non of set of ideals in R has a max element Thm: R Noetherian => R[x] Noetherian. C[x1, ..., 7n] Noetherian. \dddotsc 5.2: Algebraic Sets $\boxed{0}$ fn: $\Sigma \subset \mathbb{C}^n$. Vanishing ideal I(Σ) C C[$\pi_1, ..., \pi_n$] is the ideal of poly f s.t $f(P) = 0$ $\forall P \in \Sigma$. Rem: $\Sigma_1 C \Sigma_2 \Rightarrow I(\Sigma_2) C I(\Sigma_1)$ $I(\Sigma) = \mathbb{C}[x_1, ..., x_n] \Leftrightarrow \Sigma = \emptyset$. Dfn: I C C(x1,..., xn] ideal. Vanishing set V(I) C Cⁿ = { P E Cⁿ : f(p) = 0 d f E I}. Called "Algebraic set" Rem: $I_1 \subset I_2 \implies V(I_2) \subset V(I_1)$ Lem: $V(I(\Sigma)) = \Sigma$ Lem: I C I(V(I)) $\boxed{pfn : I \subset \mathbb{C}[x_1,...,x_n]}$ an ideal. Radical $\sqrt{I} \subset \mathbb{C}[x_1,...,x_n]$ $\{f \in \mathbb{C}[\mathsf{x}_1,...,\mathsf{x}_n]: f`` \in I\}$. I "radical" if $\sqrt{I} = I$. Rem: prime ideal: Vabel, then ae I or be I. is radical: $f^{m} \in I$, then $f \in I$ or $f^{m-1} \in I$ Rem: $V(\sqrt{1}) = V(1)$ Thm $(NuNs$ tellensatz): ICC $(x_1,...,x_n)$: $\sqrt{1}$ = $I(V(1))$ $[Cor (W.N 1) : M CCLx_1,...,x_n]$ maximal. Then $m = (x_1 - a_1, \ldots, x_n - a_n)$ for some $(a_1, ..., a_n) \in \mathbb{C}^n$ $[C_{or} (w \cdot N \cdot 2) \cup V(1) = \emptyset \Rightarrow I = C[x_1,...,x_m]$

Cor: 3 1:1 Correspondence

 $\sqrt{1+\frac{1}{2} \cdot \frac{1}{2}}$ radical ideals = $\frac{1}{2}$ algebraic subsets }: I

Din: alg. subset is treducible if it is not a union of two distinct alg. subsets.

Cor 3 1:1 correspondence

 $\sqrt{1}$: { prime ideals} = { irred. algebraic subsets }: 1

<mark>Dfn : polynomial function f</mark>:Cⁿ→C ; (x1,...,xn)→f(x1,...,xn) | bf<mark>n:</mark> XCCⁿ, YCC^m algebraic sets. A <mark>polynomial map</mark>
for f=CC(x1,...,xn). for $f \in \mathbb{C}[x_1, \ldots, x_n]$ for $f: \mathbb{R} \to (x_1(\mathbb{P}), \ldots, x_n(\mathbb{P}))$

Dfn let $X \subset \mathbb{C}^n$ be an algebraic subset. The <mark>coordinate</mark>
ring is $\mathbb{C}[X] := \mathbb{C}[\infty, ..., \infty, \infty] / \mathbb{I}(X)$

Rem: $\mathbb{C}[\mathbb{C}^n] = \mathbb{C}[\mathbf{x}_1, \dots, \mathbf{x}_n]$

if $C[X] \cong C[Y]$ as rings.

Lem: line L C C^2 . Then $L \cong C$ as an algebraic set.

<mark>Dfn:</mark> a commutative ring is <mark>reduced</mark> if f^N=0 for felR
implies that f=0.

Rem: integral domain is reduced.

Lem: $R = C[x_1,...,x_n]/I$ is reduced $\Leftrightarrow I$ is radical.

Thm: 3 1:1 correspondence entity of Ex. Cⁿ is integrally closed.

Ex. Cⁿ is narmal. $\{argenerals\}$ isomorphism $\}$ ${\{$ reduced finitely generated $\Bbb C$ –algebras $\}/{\{$ isomorphism $\}$ Thm (Zariski): α curve <code>CCC \overline{c} is</code> smooth \Leftrightarrow C is normal given by sending $X \mapsto C[X]$.

Dfn: An affine variety is an irreducible affine algebraic set.

Thm: \exists 1:1 correspondence $X \subset \mathbb{C}^n$ to define topology on X . <mark>{ affine varieties }</mark> / { isomorphism }
}
} { Fin. gen., integral domain G-algebras} / { isomorphism} **Prop** : A prime ideal $I \subset \mathbb{C}[\mathbf{x}, \mathbf{y}]$ is either:
 $\cdot \mathbf{I} = 0$ [•] <mark>I = (f)</mark> for an irreducible polynomial f C C[x,y]
• <mark>I = < x-a, y-b></mark> f_{ol} a,b € C. $Lem:$ Cuspidal cubic C: $y^2 = x^3$ is irreducible Prop: $C \ncong C$ as an affine variety

6.1 Polynomial functions and many of the G.3. Polynomial Maps and Normal Varieties

for some $f_1, ..., f_m \in \mathbb{C}[\begin{matrix} x_1, ..., x_n \end{matrix}].$

Lem: $f: X \rightarrow Y$ poly. map induces map of $C - \alpha$ lgebras by $\begin{array}{ll} F^*: \mathbb{C}[Y] \to \mathbb{C}[X], & g \mapsto g \circ f, \text{ that is} \end{array}$
Contravariant: $F^* \circ g^* = (g \circ f)^*$.

 Dfn : $X \subset \mathbb{C}^m$, $Y \subset \mathbb{C}^n$. Then X and Y are *isomorphic* Lem: $F : CCY] \rightarrow C[Y]$ homo. Then $F = f^*$ for a ! poly $f: X \rightarrow Y$.

<mark>Dfn:</mark> polymap f:x→Y is an <mark>*isomorphism* if 3</mark> polymap g:Y→x
s.t. g_of=idx and fºg=idy.

Useful: ^{E/}I is an integral domain iff I is a prime ideal. **Den:** R an I.D. and k its field of fractions ^o ¤Ekis<mark>integral</mark> over R if I ao,..., a_{d-1}ER such that
a^d + a_{d-1} ad^{d-1} +... + a_{o = 0}

* The *integral closure* R CK is the set of elements integral over R

• R is $integraly$ closed if \bar{R} = R.

<mark>Dfn:</mark> aff var X is <mark>normal</mark> if C[x] is integrally closed.
C(x) = field of rational _{fr}actions on x.

 $6.4:$ \mathbb{Z} ariski Topology on \mathbb{C}^n

G.2. Affine Varieties and Dfn: a Zariski closed subset $\neq C\mathbb{C}^2$ is an algebraic subset. Prop : \mapsto forms topology on \mathfrak{C}^2 .

Rem: Can intersect Zariski closed subsets with alg. set

Prop: poly function $f : X \rightarrow Y$ continuous in Zariski top.

6 5 Automorphisms

 $X = \alpha f f \cdot \alpha Ig$ set. $A u + (x) := \overline{\epsilon}$ isomorphisms $x \rightarrow x$, = group.

Prop: $A u A (C)$ is isomorphic to the group of affine transformations $x \mapsto ax + b$, $a \ne 0$.

Thm $(Jung)$: Aut (\mathbb{C}^2) is gen. by $(a,y) \mapsto (x, y + f(x))$ $f \in CCX$, and $(x,y) \mapsto (ax + by + \alpha, cx + dy + \beta)$, ad - bc $\neq b$.

7.1 Rational Functions

Dfn: elements of C(x) are called rational functions

 $Dfn:$ $\phi \in \mathbb{C}(\mathbf{X})$ is regular at PEX if ϕ can be written as $\frac{1}{9}$ with $q(p) \neq 0$. dom(ϕ): = { p EX where ϕ is regular}

Dfn: KCL a field

- * SCL is algebraically independent over K if elements in S do NOT satisfy a single nontrivial polynomial equation with coeffs. in k.
- . The *transcendence degree* of L/K is the largest cardinality of an alg. indep. subset of L over K.
- . X aff. var. The dimension of X is tr. deg. of C(x): C

7.2 Rational maps

Din: *rational map* f: X--> C^m is a collection of rational functions $f_1,..., f_m \in \mathbb{C}(\mathbf{x})$. $d_{\mathbf{om}}(\mathbf{f}) = \bigcap_{i=1}^m d_{\mathbf{om}}(\mathbf{f}_i)$

 $DFn : *lational map*$ $f: X -- Y = f: X \rightarrow \mathbb{C}^m$ s.t. $f(dom(f)) \subset Y$

Thm: $\phi: x \rightarrow y$ rational map of aff. var. Φ dom(ϕ) C x is open and dense in Zariski topology $\circled{2}$ dom $(\phi) = X \leftrightarrow \phi$ is a polynomial map (defined even where)

 $(Dfn: \phi: X \rightarrow Y$ is dominant if ϕ (dom ϕ) is dense in Y

Prop: $\phi: X \longrightarrow Y$ dominant, $\psi: Y \longrightarrow Z$ arbitrary, then $\psi \circ \phi : x \rightarrow 2$ is well defined.

 χ , χ aff. var, ϕ : χ --> χ \Rightarrow ϕ^* : $\mathbb{C}[\chi] \Rightarrow \mathbb{C}(\chi)$, ϕ^* : $f \mapsto f \circ \phi$. ϕ dominant \Rightarrow ϕ^* injective.

 $Cor: \Phi: X \rightarrow Y$ dominant, induces homo $\Phi^* : C(Y) \rightarrow C(X)$.

Lem: $\Phi: \mathbb{C}(1) \rightarrow \mathbb{C}(1)$ homo of \mathbb{C} -alg. Then 3! dominant $\phi: X \rightarrow Y \text{ s.t } \Phi = \phi^*$. map

Din: dominant $\phi: X \rightarrow Y$ is *birational* if 3 dominant $\psi: Y \rightarrow X$ s.t $\psi \circ \phi = id_{X}$, $\phi \circ \psi = id_{Y}$.

Cor: X, Y birational \iff $C(X) \geq C(Y)$ as C -algebras.

7.3 Projective Null stellensate

Dfn: an ideal I C C[xo,..., xn] is homogeneous if for FEI, its homogeneous components also lie in I. every

Lem: IC C[Zo, ..., 2n] homo \Leftrightarrow I gen. by homo.

 $DFn: I \subset C[\mathcal{X}_0, ..., \mathcal{X}_n]$ homo. The vanishing set is $V(I) := \{ p \in P^n : h(P) = 0 \forall h \in I, h \text{ homo} \}$ V(I) is called algebraic.

Rem: $C[x_0,...,x_n]$ Noetherian \Rightarrow I fin. gen. $V(1)$ = zero locus of some finite set of polynomials.

Din: XCPⁿ a subset. The *ideal of vanishing* is $I(X): = \{ h \in \mathbb{C}[\lambda_0, ..., \lambda_n] \text{ home}: h(P) = o \forall p \in X \}$

 $Thm : (Pm)$ ective Null stellensata) I homo, then $\circled{1}$ V(I) = $\phi \Leftrightarrow \langle x_0,...,x_n \rangle \in \sqrt{1}$ \circledcirc $V(1) \neq \phi \Rightarrow \sqrt{1} = I(V(1))$

Cor: 3 1:1 Correspondence $\{$ hom. radical ideals of $\mathbb{C}[x_0,...,x_n]$ not containing $\langle x_0,...,x_n\rangle\}$ {algebraic subsets of IPⁿ}

Dfn: Alg. sub. $X \subseteq \mathbb{P}^n$ is *ineducible* if $X \neq X_1 \cup X_2$, X_1, X_2 alg subs. Called a *projective* variety.

Cor: 3 1:1 Correspondence { hom. prime ideals of $\mathbb{C}[x_0,...,x_n]$ not containing $\langle x_0,...,x_n\rangle$ } { irred. algebraic subsets of IPⁿ}

DFn: X C IPⁿ closed if algebraic. > defines topology.

IPⁿ covered by open sets U_i C Pⁿ defined by xi =0. Gives

7.4. Birational Maps

 $\frac{Dfn:}{p}$ rational function $\phi: X \dashrightarrow \mathbb{C} := \phi = \frac{4}{9}$, $f,g \in \mathbb{C}[x_0,...,x_n]$ hom., $deg(f) = deg(g)$, $g \notin I(x)$ • ϕ regular at PEX if $q(P) \neq 0$. $dom(\phi) = \{ \rho \in X : p \text{ regular} \}$ \sim

Lem: U; standard open C Pⁿ. $X \cap U_i \neq \emptyset \Rightarrow C(X) \geq C(X \cap U_i)$

- $Cor: X \wedge U_i \neq \emptyset \neq X \wedge U_j$, then $X \wedge U_i$ and $X \wedge U_j$ are birational as affine varieties.
- Dfn: $\phi: \lambda \rightarrow \lambda$ a *morphism* (poly map) if dom(ϕ) = X.

 $Dfn: \phi: X \rightarrow Y$ dominant if ϕ (dom ϕ) is dense in Y

νοφ=idx
Diretional if J dom. Ψ:γ-→χ {φοψ=idy}

 $Cor: \mathbb{C}(X) \cong \mathbb{C}(Y) \iff X, Y \text{ birational.}$

Dfn: X proj. var is *rational* if X birat. to Pⁿ

Ex. smooth conic is rational

Ex. Legendre cubic rational \Leftrightarrow $a = 0, 1$.

Dfn: surface SCP³ of degd := 2em set of hom poly SCP^3 irred quad surf.

f(x,y,2,w) = 0 , degf = d. extrapropoly the S smooth $\Rightarrow E$ |P'xm¹

Dfn: a *projective fransf***ormation** is an iso IP³→ IP³ given
by acting an [x:y:२:w] by an invertible ux4 matrix $PGL_{4}(\mathbb{C})$: $=$ $\frac{GL_{4}(\mathbb{C})}{\sqrt{\mathbb{C}^{*}}}$

 $DFn: S\subset \mathbb{P}^3$ is smooth if $\left(\frac{25}{92}, \frac{25}{99}, \frac{25}{99}\right)|_{\rho}$ to VPES. Thm (Segre) If d >3 , then S contains at most

 DFn : PES smooth. The $fangent$ plane at P is: $\frac{9f}{2f}$ (p) $x + \frac{3f}{2f}$ (p) $y + \frac{3f}{2f}$ (p) $x + \frac{3f}{2f}$ (p) $w = 0$

 $Drn:$ line $\subset \mathbb{P}^3$ is an embedding $\mathbb{P}^1 \subset \mathbb{P}^3$ given by: $\qquad \qquad$ contains exactly 27 lines. $\lceil 2 \cdot u \rceil$ \mapsto $\lceil 2 \cdot u \rceil + 2 \cdot u \cdot y \cdot 3 + 4 \cdot y \cdot 4 + 4 \cdot y \cdot 5 + 4 \cdot y \cdot 6 + 4 \cdot y \cdot 7 + 4 \cdot y \cdot 7 + 4 \cdot y \cdot 8 + 4 \cdot y \cdot 9 + 4 \cdot y \cdot 1 + 4 \cdot y \cdot 1 + 1 \cdot y$ $[\overline{x}_1 : y_1 : z_1 : w_1] \neq [\overline{x}_2 : y_1 : z_2 : w_2]$ Prop SCP³ irreducible cubic surface PES singular.

Prop : PES smooth, $p \in \ell \subset S$. Then $\ell \subset \ell$ angent plane at P.

Dfn: quadric surface CIP³ is given by S contains fewer than 27 lines. $Ax^{2} + Bxy + Cy^{2} + Dxa + Eya + Fa^{2} + Gxw + Hyw + Iaw + Jw^{2}=0$ equivalently $\begin{pmatrix} 1 & b_1 & b_2 & d_1 \\ c_1 & c_2 & d_2 & d_2 \end{pmatrix}$ $(x_1, y_1, z_1 \omega)$ $\begin{array}{|c|c|c|c|c|}\n\hline\nb_1 & E & E & E & E \\
\hline\nD_1 & E & E & E & \n\end{array}$

o

n = (nm)(m+i) - l

 $rac{S}{S}$

 $\ddot{\mathbf{Q}}$ $\frac{1}{100}$ every quad surf CP is projectively equive to either irreducible $\left\{\begin{array}{l}\n\text{(i)} \ \text{(ii)} \ \text{(ii)} \ \text{(iii)} \ \text{(iv)} \ \text{(v)} \ \text{(v)}$

Cor : quad surf smooth \iff det $(Q) \neq 0$.

 $Dfn: C \subset P^2$ curve, $f(x,y,z) = 0$. A cone on C is a surface in \overline{P}^3 defined by $f(x, y, a) = 0$. \mapsto has singular point $[0:0:0:1]$

8 3 Segre Embedding

I $\frac{\text{Dfn: Segre Embedding}}{\text{1}}$ is the map $\Phi: \mathbb{P}^m \times \mathbb{P}^m \rightarrow \mathbb{P}^m$ x_o : …ː२nʃ, [Yoː…ːYm]) <mark>→</mark> [łxiYj}_{i=o,…,n,j-o,…,m}

Prop: Segre is injective. Image of ϕ is variety given by Vanishing of 2x2 determinants of matrix $[x_i y_j]$

Prop : product of proj. var is proj. var.

Prop: smooth quad surf \cong \mathbb{P}^1 x \mathbb{P}^1 as proj. var.

8.1 Surfaces 8.4 Lines on Surfaces

- S smooth \Rightarrow \cong $\mathbb{P}' \times \mathbb{P}'$, two rulings by lines
- S singular \Rightarrow S = cone of smooth conic. one ruling by lines.

 $(d - z)$ $(d - 6)$ $(finitely many)$ lines.
e.g. $d = 4$ contains 64 lines.

Thm (Cayley, Salmon) : a smooth cubic surface in \mathbb{P}^3

Then $3 \ell C S s + p \epsilon \ell$.

 $Thm: S \subseteq \mathbb{P}^3$ irreducible singular surface. Then either

- 8.2. Quadric Surfaces Surfaces Superinter States infinitely many singular points
	- $S \cong$ cone on irreducible cubic (one singular point)
	-

Thm (Castelnuovo) : unirational surface is rational

Thm: Smooth cubic surface is rational.

10.1: Tangent Spaces to Varieties

 $X: f(x_1,...,x_n) = 0$:= irreducible hypersurface in C^n

Dfn: PEX is *Singular* if $\frac{\partial f}{\partial x_1}(p) = \cdots = \frac{\partial f}{\partial x_n}(p) = 0$ otherwise smooth. P=(q,...,an)EX smooth, *tangent plane* is the affine hyperplane $\frac{\partial f}{\partial x_1}(p)(x_1-a_1)+...+\frac{\partial f}{\partial x_n}(p)(x_n-a_n)=0$

Similarly for in IPⁿ.

Prop: $X : f(x_0... , x_n) = 0$ irred. hypersurface in C^n . The set of singular points is a proper alg. sub of X. The set of smooth points is dense.

 $X \subset C^n$ aff. var, $I(x) = \langle f_1, \ldots, f_m \rangle$, $p = [a_1, \ldots, a_n] \in X$.

DFn : *Langent space* T_PX = affine subspace of Cⁿ given by $\frac{\partial f_i}{\partial x_1}(p)(x_1-a_1)+\ldots+\frac{\partial f_i}{\partial x_n}(p)(x_n-a_n)=0 \qquad i=1,\ldots,m$

 $Dfn: Pex$ *Smooth* if dim $T_PX = dimX$.

 $f:X\rightarrow Y$ an iso of aff var, P smooth $G \rightarrow F(P)$ smooth

Prop: X = proj. var. Set of singular points of X is a proper algebraic subset.

10.2 Blowups and Curves

Dîn: Parameinze C² x P¹ by ((2,14), [a:p]). The blowup of \mathbb{C}^2 at $(0,0)$ is the subset $Bl_{(0,0)} \mathbb{C}^2 \subseteq \mathbb{C}^2 \times \mathbb{P}^1$ defined by $x\beta = \alpha y$ Let $\pi: Bl_{(0,0)} \rightarrow \mathbb{C}^2$ (proj. onto first factor), and denote by $E = \pi^{-1}(0,0)$ the **exceptional curve.**

Rem: $E \cong P^1$, IT is a morphism, π restricts to an isomorphism $S/E \rightarrow \mathbb{C}^{2}/(0,0)$, in particular, π is **birational**

 $\boxed{\text{Dfn}:}$ Parametrize $\boxed{P^2 \times P^1}$ by ([x.y.z], [x.p]). The **blowup** of \mathbb{P}^2 at C0:0:1 is the subset $\text{Bl}_{(n,0:1)} \subset \mathbb{P}^2 \times \mathbb{P}^1$ $x\beta = \alpha y$ defined by Let $\Pi: Bl_{[0:0:1]} \to \mathbb{P}^2$ (projection) and $E = \pi^{-1}([0:0:1])$ be called the exceptional curve.

Rem: $E \ge P^1$, $\pi: B I_{\text{c}(\infty,1)} \to P^2$ birational morphism. and $Bl_{C_0 \cdot \alpha \cdot Q} \mathbb{P}^2 \setminus E \stackrel{\sim}{\rightarrow} \mathbb{P}^2 \setminus [0:0:1]$

 $\boxed{\text{Dfn:}}$ C C P² a curve. Its *Strict* transform \widetilde{C} C Bl_{cotati} \mathbb{P}^2 is the closure of $\pi^{-1}(C\setminus[0:0:1])$. If $C0:0:1] \in C$, then $C = Bl_{[0:0:1]}C$ is the blowup of C at $[0:0:1]$.

 $C \cong \widetilde{C}$. Rem: blowup at smooth point is an iso,

idea: makes singular curves (eventually) smooth.

10.3 : Blowups and Surfaces

let $Z \in \mathbb{C}^n$ be subvar, $I(z) = (90, ..., 9k)$

Din: blowup of C^a with center at 2 is the subvariety Bl & C $^{\circ}$ C $\mathbb{C}^{n} \times \mathbb{P}^{\kappa}$ defined by $\mathbf{u}_{i} \mathbf{g}_{j}(\mathbf{x}) - \mathbf{u}_{j} \mathbf{g}_{i}(\mathbf{x}) = \mathbf{0}$ for i=j and [uo:...: uk] EIPK.

Π:BI₇ Cⁿ → Cⁿ : Π⁻¹(2) C BI₇Cⁿ is the <mark>exceptional hypersurface</mark>

Thm: The blowup of P² at 6 points, no 3 collinear and not all lying in a conic is a cubic surface. Any cubic surface is obtained in this way.

10.4: Birational Geometry

Thm: smooth projective curve has genus 97,0, and for each genus there are finitely many parameters describing a curve of genus q.

Rem: $f: C_1 \rightarrow C_2$ rational map of smooth proj. curves. Then f is a morphism, and smooth birational curves are isomorphic.

Thm: f: x -- > 4 rational morphism. Then there is a blowup $\pi: \hat{X} \to X$ and a morphism $T \circ f = \hat{f} + \hat{f} + \hat{f} + \hat{f}$