

Dfn: Line LCC² given by solutions of the equation ax + by + c = 0, $(x, y) \in \mathbb{C}^2$ $a, b, c \in \mathbb{C}$ $(a, b) \neq (o, o)$. Prop: P1, Pz E C² distinct. Then 3! Line passing through them. equation of line is given by: $de \begin{pmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_1 & 1 \end{pmatrix} = 0$ Prop : L, OL, in C². Then one of these is true: $\cdot l_1 = l_2$ • $L_1 \cap L_2 = EP_3^2$, $P \in C^2$, • $L_1 \cap L_2 = \emptyset$ (parallel) Dfn: Conic C C C² is a plane Curve given by $q(x,y) = 0x^2 + bxy + cy^2 + dx + ey + f = 0$ (a,b,c) + (0,0,0). Irreducible: if polynomial does not factor. Rem: Reducible Conic: $Q\chi^{2} + b\chi y + Cy^{2} + d\chi + ey + f = (\alpha_{1}\chi + \beta_{2}y + \chi_{1})(\alpha_{2}\chi + \beta_{2}y + \chi_{2}).$ = Union of two lines.) (in IR2: (nondeg) ellipse and other degenerate cases. Prop: La line and C a conic. Then either C= LUL2 for some line Lz (C is reducible) or [LNC] < 2. Dfn: Plane curve CCC^z given by equation p(x,y) = 0, p(x,y) is non-constant poly. 1.2 Projective Curves Den: Complex projective line $\mathbb{P}^{1} = (\mathbb{C}^{2} \setminus (0, 0)) / \mathcal{N}$ X~ 7X ¥ 0 ≠ 7 € C . where homogeneous (oardinates: [x:y] = [x:y]. Rem: $[x:y] \in \mathbb{P}^1$ gives line $ax + by = 0 \subset \mathbb{C}^2$ through origin. P' = C "with an extra point at infinity". **Dfn:** Complex projective plane $\mathbb{P}^2 = (\mathbb{C}^3 \setminus (0, 0, 0)) / v$ where $(x,y,z) \sim (\lambda x, \lambda y, \lambda z) \quad \forall \ 0 \neq \lambda \in \mathbb{C}$.

[x: y · z] = [x: xy · xz]

Cor: $IP^2 = C^2$ with a disjoint IP^1 (line at infinity)

Dfn: Projective Curve $C \subset \mathbb{P}^2$ given by the equation $p(\pi, y, z) = 0$, where p is a nonzero homogeneous polynomial.

Dfn: Line LC \mathbb{P}^2 given by solutions of the equation $ax + by + (z = 0 \quad [x:y:z] \in \mathbb{R}^2$, where $(a,b,c) \neq (0,0,0)$.

Prop: $P, Q \in \mathbb{P}^2$, $P \neq Q$. Then <u>3! line passing through P and Q</u> $P = [x_1 : y_1 : t_1]$, $Q = [x_2 : y_2 : t_2]$, equation is given by:

 $det \begin{pmatrix} \chi & y & z \\ \chi_1 & y_1 & z_1 \\ \chi_2 & y_2 & z_2 \end{pmatrix} = 0$

Prop: Lylz C P². Then either Li=Lz or [LiOLz] = 1.

```
Dfn: Conic C \subset \mathbb{P}^2 is given by solutions of

ax^2 + bxy + (y^2 + dxz + eyz + fz^2 = 0)

(where (a,b,c,d,e,f) \neq (0,0,0,0,0,0)
```

Prop: $L, C \subset \mathbb{P}^2$. Then either $C = LUL_2$ for some L_7 , or $|L\cap C| = 1 \text{ or } 2$.

1.3 Projective Transformations

Affine transformation: $\mathbb{C}^2 \rightarrow \mathbb{C}^2$: T(x) = Ax + B, where $A \in Gl_2(\mathbb{C})$ and B a translation vector. \downarrow Euclidean := A Orthogonal

Projective Transformation: $\mathbb{P}^2 \rightarrow \mathbb{R}^2$: T(x) = MX, $M \in Gl_3(\mathbb{C})$. $\mathbb{P}Gl_3(\mathbb{C}) = \frac{Gl_3(\mathbb{C})}{\mathbb{C}^*}$

identity map = $\begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix}$, $\lambda \neq 0$

Thm: P₁, P₂, P₃, P₄ $\in \mathbb{P}^2$, Such that no three are collinear. Then \exists projective transformation $\phi: \mathbb{P}^2 \rightarrow \mathbb{P}^2$ s.t.

 $\phi(P_1) = [1:0:0]$ $\phi(P_3) = [0:0:1]$ $\phi(P_2) = [0:1:0]$ $\phi(P_4) = [1:1:1].$

P: = [x:: y:: 2i]. Then $\begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ 2 & 2 & 2 & 3 \end{pmatrix}$ is a projective trans. giving $\varphi([1:0:0]) = P_1, \varphi([0:1:0]) = P_2, \varphi([0:0:1]) = P_3.$

Thm: P.J..., P.S. C. IP² distinct, and no 3 Collinear. Then 3! Conic passing through them.

1.4 Classification of Conics

Thm: C C IP ² a	Conic. The	n <mark>3 a proje</mark>	ctive trans.
$\phi: \mathbb{P}^2 \to \mathbb{P}^2$ suc	h that Ø(c) is one of	the following:
3 x ² + y ² + 2			
2 x² + y² = 0	(4,0	LZ) (100)
3 x ² = 0	(doub	le line) ()

Slides show how to find such a transformation.

eqn of conic CCP², ax²+bxy +cy² +dxz +eyz +fz² =o Can be Written in symmetric Matrix form:

$$\mathbf{B} = \begin{pmatrix} 0, & b/2, & d/2 \\ b/2, & C, & e/2 \\ d/2, & e/2, & f \end{pmatrix}$$

Prop: conic $C \subset \mathbb{P}^2$ is irreducible iff $det(B) \neq 0$.

Thm (Intersection of Conics)

Suppose C, C' C IP^2 are two unequal irreducible Conics. Then $1 \le |C \cap C'| \le 4$. 2.1 Smoothness, Tangents and Transversality

Dfn: CCP² an irreducible Curve, PEC is smooth if the $\left(\begin{array}{c} \frac{9x}{9t}, \frac{9x}{9t}, \frac{9x}{9t} \end{array}\right) = \left| \left(\begin{array}{c} \frac{9x}{10}, \frac{9x}{10} \end{array}\right) \right|_{1}$ Gradient

Smooth curve: P Smooth VPEC. Sing(C) = set of singular points of C.

Dfn: f(x,y,z) irred. (urve $C | P^2 , P = [\alpha : \beta : Y]$ a smooth point. Then +he tangent line at P:

 $\frac{\partial f}{\partial x}(\alpha,\beta,\gamma)x + \frac{\partial f}{\partial y}(\alpha,\beta,\gamma)y + \frac{\partial f}{\partial z}(\alpha,\beta,\gamma)z = 0$

Lem: a line is smooth lem: an irreducible conic is smooth.

Dfn: C_1 , $C_2 \subset \mathbb{P}^2$ curves intersecting at P. This intersection is called *transverse* if P is smooth in both C1 and C2 Tangent lines of P in C and C differ.

not +ransverse : 🤘 💙

Prop: LC IP² a line and C an irreducible Conic. Then either L is tangent to C (|LnC| = 1), or L intersects C transversely at 2 points.

Prop: C, Cz C IP^z distinct, irred. conics. Then they intersect transversely at all points at there are 4 intersection points.

2.2 Bezoul's Theorem

Thm: f(x,y) Nonzero homogeneous poly of deg d. Then f(x,y) = 0 in \mathbb{P}^1 Consists of d points counted with Multiplicity.

Bezoui's Theorem:

f(x,y,z), g(x,y,z) hom. poly without common factors. Then the solutions of the system $\begin{cases} f(x,y,z) = 0 \\ g(x,y,z) = 0 \end{cases}$ in P² are given by deg(f)deg(g) points counted with multiplicity.

Bezoui's Theorem: C., Cz distinct irred. curves with degrees d, and dz. Then there are didz intersection points counted with Multiplicity.

Rem: common factor > infinitely many solutions (in IP2)

Dfn (Intersection multiplicity at P). Assume P = [0:0:1]: $R = C[\hat{z}, y]_{(0,0)} \stackrel{!}{=} commutative ring of quotients of$ $\frac{a(x,y)}{b(\bar{x},\bar{y})} \text{ where } b(0,0) \neq 0.$ Polynomials I C R := ideal generated by f(え」、) and g(え、う、).

Intersection multiplicity = $(f,g)_p := \dim_{\mathbb{C}}(R/I)$ or use R = CII = ving of power series

Properties of intersection multiplicities: Say F(P) = g(P) = h(P) = 0. Then 🕙 (f,g)p »l ④ ⇒ (f,gh)p = (f,g)p + (f,h)p (a) If h(b) + o + hev (t'dp)b = (t'd)b (fig) p = 1.

Rem: transverse V intersection points $\Rightarrow |C_1 \cap C_2| = d_1 d_2$

write an irreducible curve CCP² of degree d as $2^{d}h_{0}(x,y) + 2^{d-1}h_{1}(x,y) + \cdots + h_{d}(x,y) = 0$ h; = hom. poly of deg = i.

Dfn: P = [0:0:1]. Multiplicity multp(C) is the smallest n such that hn(x,y) is nonzero.

I PEC ⇔ mult p(c) »1 ⁽²⁾ P is a singular point (a) mult_P(c) , 2.

Prop: C1, Cz distinct, irred. curves in IP² and PECINCZ. Then $(C_1, C_2)_p \gg \text{mult}_p(C_1) \cdot \text{mult}_p(C_2)$

2.3. Applications of Bezout's Theorem

2.4 Points on Curves

Prop: $P_1, P_2 \in \mathbb{R}^2$ distinct. $\exists !$ line passing through them.

Prop: P1,...,P5 E IP² distinct, no four contained in a line. Then <mark>3! Conic Passing through them.</mark>

Prop: let C C IP² be irred. curve, deg 7,4. Then C has at most 3 singular points.

Sd := space of homogeneous degree d polynomials dim(Sd) = $\frac{(d+1)(d+2)}{2}$

Dfn: Σ a finite set of points. Then Sd(Σ) := $\{f \in Sd | f(p) = 0 \forall p \in \Sigma\}$

"Σ imposes independent conditions on Sd ⇔ dim Sd (Σ) = dim Sd - IΣI.

note: dim Sd(Z) > dim Sd - (Z).

 $\dim S_1 = 3$

- P imposes i.c. on Si
- P,Q impose i.c. on Si (⇒) P ≠ Q
- P, O, R impose i.c. (> P, Q, R are not collinear.
- > 4 points do not impose i.C.s.

 $\dim S_2 = 6$

- 1,..., 3 points impose ics ⇔ distinct
- 4 points impose ics ⇔ distinct and not collinear
- G points impose ics ⇔ do not lie on a conic
- »7 fail to impose ics.

Thm: 5 points impose i.c.s on Sz (i.e. 3! conic passing through them) (=> no 4 are collinear

See Slides for finding i.c. Criteria.

Prop: $\Sigma \subset \mathbb{P}^2$.

- (1) Suppose $a \neg d$ points lie on a line L given by f(x,y,z) = 0. Then $S_d(\Sigma) = f \cdot S_{d-1}(\Sigma \setminus L)$
- Suppose a > 2d points lie on an irreducible conic C given by f(x,y,z) = 0. Then $Sd(\Sigma) = f \cdot Sd-z(\Sigma \setminus C)$.

Thm: P1,..., P8 EIP² distinct, and suppose at most 3 lie on a line and at most 6 lie on an irred, conic. Then P1,..., P8 impose ics on S3. Thm : (Chasles) C1, C2 Cubics intersecting at 9 distinct points, P1,..., P9. Then any cubic passing through P1,..., P8 passes through P9.

Thm: (Pascal) Let C be an irreducible Conic and P1,P2,P3,Q1,Q2,Q3 distinct points on C. Then R1 = P1Q1, P3Q3, R2 = P2Q1 \cap P3Q2, and R3= P2Q3 \cap P1Q2 are collinear.

3. 1 Inflection points

Rem: C C P² curve, L line intersecting C at smooth point. $(L \cdot C)_p > 2 \iff L$ is tangent at P.

Dfn: $P \in C$ is called *inflection point* if it is smooth and $(L \cdot C)_P > 3$, L = tangent at P.

Dfn: $f(x_1, y_1, z)$ hom. poly. Hessian: Hess(f) = det $\begin{pmatrix} f_{XX} & f_{XY} & f_{Xz} \\ f_{XY} & f_{YY} & f_{Yz} \\ f_{xz} & f_{yz} & f_{zz} \end{pmatrix}$ $f_{ij} = \frac{\partial^2 f}{\partial i \partial j}$

Thm (Hess. Criterion): Let $P \in \mathbb{R}^2$ Satisfy f(P) = Hess(P)(P) = 0If $P \in C$, C = F(x, y, z) Smooth, then P is an inflection point. $\Rightarrow (f \cdot Hess(f))_p = 1 \Leftrightarrow (L \cdot f)_p = 3$, L = tangent at P.

Prop: Let f have no linear factors. Then f=0 has finitely many inflection points. ⇒ Hess(f) and f have no common factors.

Prop: C C IP² smooth Curve, deg 73. Then C has at least one inflection point.

Prop: $C \subset IP^2$ **Smooth cubic.** Then C has **9** distinct inflection points.

3.2 : Classification of Cubics

Rem: any line LCIP² is projectively equivalent to z = 0

Thm (Weierstrass form) : Let CCIP² be a smooth cubic. Then 3 projective transformation which takes it to $y^2 z = \chi^3 + a\chi z^2 + bz^3$

Thm : A weierstrass cubic $y^2 = x^3 + axz^3 + bz^3$ is Smooth iff the discriminant $\Delta = -16(4a^3 + 2zb^3) \pm 0$

Rem: $\Delta = 0 \iff \pi^3 + \alpha \pi \epsilon^2 + b \epsilon^3$ has a repeated root.

Thm (Legendre form): $C C P^2$ smooth cubic. Then 3 projective transformation which takes it to the form $y^2 = x(x-2)(x-32)$

 $for \quad \lambda \neq 0, 1.$

Dfn: The *j-invariant* of $y^2 = x^3 + ax^2 + bz^3$ is $j = 1728 \frac{4a^3}{4a^3 + 27b^2}$

Thm :	two	Smoot	h V	veierstra	\$5 (cubics	are	projectively	
equi vo	llent	147	they	have	the	same	ji	nvariant.	

Thm: $C \subset \mathbb{P}^2$ singular irreducible Cubic. Then 3 projective transformation taking C to one of the following forms: (nodal) $zy^2 = x^2(x+z)$ (cuspidal) $zy^2 = x^3$

Thm : reducible Cubic always contains a line. Projectively equivalent to $\chi(zy+\chi^2)=0$ xy(x+y) = 0 $\chi(f x + y^2) = 0$ x2 y = 0 x3 = 0 0= fyx 3.3. Group Law on Elliptic curves Dfn: Elliptic curve := smooth cubic ECIP² with a chosen point OEE. ECP^2 elliptic, $A,B \in E$. Define $A+B \in E$ as follows: • L1:= AB. If A=B, L1=tangent line at A. · LINE = { A, B, P} counted w/ multiplicity. Degen. cases: - A=B = P. Li tangent to A, intersects P transversely - A = B=P. L, tangent to P, intersects A transversely - A=B=P. L. tangent to A, A an inflection point. · Lz := OP . Third intersection point is A+B.

⇒ E forms an abelian group.

Prop: A, B, C \in E, and O \in E an inflection point-Then A, B, C lie on a line \Leftrightarrow A + B + C = 0

Prop: OEE an inflection point and PEE. The inverse - PEE is the third point on line OP.

Prop: OEE an inflection point, $A \in E$ s.t 3A = 0. Then A is an inflection point.

Denote third point on Line OP by P

If O an inflection point, then $-A = \overline{A}$

4.1 Elliptic curves over other Fields

- **Dfn**: $k \in field$. $C \subset \mathbb{P}^2$ given by f(x,y,z) = 0. Then $C(k) := \{ \{x:y:z\} \in k : f(x,y,z) \} = 0$.
- Rem: Cubic smooth over 1Fp iff pł∆

Prop: E(K) an abelian group.

Thm (Mordell): E(Q) = 72"×72/q,72 ×···×72/qn72

- Thm (Fallings): $C \subset P_{Q}^{2}$ smooth curve deg $d_{7}4$. Then C(Q) is finite.
- Din: G abelian, $a_i b \in G_i$. Discrete logarithm: $log_b a \in T_i$ s.t $a = b^{log_b a}$.

Prop : E : y^{2} = x^{3} + ax^{2} + bt^{3} . Then E(IFp) ≤ 2p+1.

4.2. Rational Curves

- **Dfn:** $C \subset \mathbb{R}^2$ is **rational** if \exists non-constant map $\mathbb{R}^1 \to \mathbb{R}^2$ $[a:b] \mapsto [p(a,b): Q(a,b): r(a,b)]$ for some hom. poly of the same deg >1, Whose **image** is contained in C.
- **Prop:** C rational \Leftrightarrow 3 P E C(C(t)) with nonconstant coords.
- **Prop**: C irred. + rational $\Rightarrow \mathbb{P}^1 \rightarrow \mathbb{C}$ surjective

Prop: C irred conic \Rightarrow 3 iso $P' \rightarrow C \Rightarrow C$ rational

Prop: C irred. Singular Cubic ⇒ C rational • Cuspidal: [a:b] ↦ [a²b:a³:b³] Nodal : [a:b] ↦ [a²b-b³:a³-ab²:b³]

Prop: Legendre Cubic is not rational ⇒ Smooth Cubics are not rational.

4.3 : Topology of Curves

Thm: every real 2D Connected, compact, oriented manifold is homeomorphic to a compact, oriented surface of genus g70

Thm (Genus-degree formula)

 $C \subset \mathbb{P}^2$ Smooth curve of deg d. Then C is homeomorphic to a compact, oriented surface of genus g = (d-1)(d-2)

relative to quotient topology

5.1 Noetherian Rings Dfn: Ring noetherian if all its ideals are finitely generated Prop: R noetherian, ICR idea) ⇒ ^R/I Noetherian. Thm: R Noetherian Every ascending chain of ideals stabilizes Every non ϕ set of ideals in R has a max element Thm: R Noetherian ⇒ R[x] Noetherian. C[x1,...,Zn] Noetherian. . . . 5.2 : Algebraic Sets Dfn: ΣCCⁿ· Vanishing ideal I(Σ)CC[אי,...,אח] is the ideal of poly $f s t f(p) = 0 \forall P \in \Sigma$. Rem: $\Sigma_1 \subset \Sigma_2 \Rightarrow I(\Sigma_2) \subset I(\Sigma_1)$ $I(\Sigma) = \mathbb{C}[\chi_1, \dots, \chi_n] \Leftrightarrow \Sigma = \emptyset.$ Dfn: $I \subset \mathbb{C}[x_1, ..., x_n]$ ideal. Vanishing set $V(I) \subset \mathbb{C}^n$ = $\{ P \in \mathbb{C}^n : f(P) = 0 \forall f \in I \}$. Called "Algebraic set" Rem: $I_1 \subset I_2 \Rightarrow \vee(I_2) \subset \vee(I_1)$ Lem: $V(I(\Sigma)) = \Sigma$ Lem: IC I(V(I)) Dfn: ICC[x1,...,xn] an ideal. Radical JICC[x1,...,xn] $\frac{\{f \in \mathbb{C}[x_1, \dots, x_n] : f^* \in I\}}{\{f \in \mathbb{C}[x_1, \dots, x_n] : f^* \in I\}}$ prime ideal: YabeI, then aeI or beI. Rem: is radical : fm EI, then fEI or fm-1 EI Rem :: V(JI) = V(I)Thm (Nullstellensatz): IC C[x1,...,2n]: $\sqrt{I} = I(N(I))$ Cor (W.N 1) : m C C [x1,...,xn] maximal. Then $m = (x_1 - q_1, \dots, x_n - q_n)$ for some $(a_1, \ldots, a_n) \in \mathbb{C}^n$ $(V(I) = \emptyset \Rightarrow I = ([x_1, ..., x_m])$

Cor: 3 1:1 Correspondence

V: { radical ideals} Z { algebraic subsets}: I

Ofn: alg. subset is irreducible if it is not a union of two distinct alg. subsets.

Cor 3 1:1 Correspondence

N: { prime ideals} \rightleftharpoons { irred. algebraic subsets }: I

6.1 Polynomial functions

Dfn : polynomial function $f: \mathbb{C}^n \to \mathbb{C}$; $(x_1, \dots, x_n) \mapsto f(x_1, \dots, x_n)$ for $f \in \mathbb{C}[x_1, \dots, x_n]$.

Dfn: let $X \subset \mathbb{C}^n$ be an algebraic subset. The Coordinate ring is $\mathbb{C}[X] := \mathbb{C}[x_1, \dots, x_n] / \mathbb{I}(X)$

Rem: $\mathbb{C}[\mathbb{C}^n] = \mathbb{C}[x_1, \dots, x_n]$

Dfn: $X \subset \mathbb{C}^m$, $Y \subset \mathbb{C}^n$. Then X and Y are *isomorphic* if $\mathbb{C}[X] \cong \mathbb{C}[Y]$ as rings.

Lem: line LCC². Then L°C as an algebraic set.

Useful: ¹ is an integral domain iff I is a prime ideal.

DFn: a commutative ring is **reduced** if $f^N = 0$ for $f \in \mathbb{R}$ implies that f = 0.

Rem: integral domain is reduced.

Lem: R = C[x1,...,xn]/I is reduced 🖨 I is radical.

Thm: ∃1:1 Correspondence {affine algebraic sets}/{zisomorphism} {reduced finitely generated C-algebras}/{zisomorphism} given by sending X → C[x].

6.2. Affine Varieties

Dfn: An affine variety is an irreducible affine algebraic set.

Thm: ∃ 1:1 Correspondence

{affine varieties} / {isomorphism}
‡

Fin. gen., integral domain C-algebras} / {isomorphism}
Prop: A prime ideal I C C[x, Y] is either:

I = 0
I = (f) for an irreducible polynomial f ∈ C[x,y]
I = (x-a, y-b) for a, b ∈ C.

Lem: Cuspidal cubic C: y² = x³ is irreducible prop: C ¥ C as an affine Variety

6.3. Polynomial Maps and Normal Varieties

Dfn: $\chi \subset \mathbb{C}^n$, $\Upsilon \subset \mathbb{C}^m$ algebraic sets. A polynomial map $f: \chi \to \Upsilon$ is a map given by $f: P \mapsto (f_1(P), \dots, f_m(P))$ for some $f_1, \dots, f_m \in \mathbb{C}(\chi_1, \dots, \chi_n]$.

Lem: f: X→Y poly. map induces map of C-algebras by f^{*}:C[1]→C[X]; g ↦ g of , that is Contravariant: f^{*} o g^{*} = (g o f)^{*}.

Lem: $F: \mathbb{C}[Y] \rightarrow \mathbb{C}[X]$ homo. Then $F = f^*$ for a ! poly $f: X \rightarrow Y$.

Dfn: poly map f: x→Y is an *isomorphism* if 3 poly map g: V→X s.t. gof = idx and fog = idy.

Dfn: R an I.D. and k its field of fractions • $\alpha \in K$ is *integral* over R if $\exists a_0, ..., a_{d-1} \in R$ such that $\alpha^d + a_{d-1} \alpha^{d-1} + ... + a_0 = 0$

* The integral closure RCK is the set of elements integral over R

R is integrally closed if R = R.

Dfn: aff. var. X is **normal** if $\mathbb{C}[X]$ is integrally closed. $\mathbb{C}(X) =$ field of rational fractions on X.

Prop: UFD is integrally closed. Ex. Cⁿ is normal.

Thm (Zariski): a curve CCC² is smooth 🛱 C is normal

6.4: Zariski Topology on Cⁿ

Dfn: a Zariski Closed subset $Z \subset C^2$ is an algebraic subset. Prop : Ly forms topology on C^2 .

Rem: Can intersect Zariski Closed subsets with alg. set $X \subset \mathbb{C}^n$ to define topology on X.

Prop: poly function f:X→Y continuous in Eariski top.

6.5: Automorphisms

X = aff, alg set. Aut(X) := { isomorphisms X→X}, = group.

Prop: Aut(C) is isomorphic to the group of affine transformations $x \mapsto ax + b$, $a \neq 0$.

Thm (Jung): Aut(\mathbb{C}^2) is gen. by $(2,y) \mapsto (2,y + f(2))$ fe $\mathbb{C}(X)$, and $(2,y) \mapsto (2x + by + a, (2x + dy + b), ad - bc <math>\neq b$.

7.1 Rational Functions

Dfn: elements of C(x) are called rational functions

Dfn: $\phi \in \mathbb{C}(X)$ is regular at PEX if ϕ can be written as $\frac{f}{2}$ with $g(P) \neq 0$. dom $(\phi) := \{P \in X \text{ where } \phi \text{ is regular}\}$

Dfn: KCL a field

- SCL is algebraically independent over K if elements
 in S do NOT satisfy a single nontrivial polynomial
 equation with coeffs. in K.
- The transcendence degree of L/K is the largest cardinality of an alg. indep. subset of L over K.
- X aff. var. The dimension of X is tr. deg. of C(X): C

7.2 Rational maps

Dfn: *Pational map* $f: X \rightarrow \mathbb{C}^m$ is a collection of rational functions $f_1, \dots, f_m \in \mathbb{C}(X)$. dom $(f) = \bigcap_{i=1}^m dom(f_i)$

Dfn: *rational* map $f: X - \rightarrow N = f: X \rightarrow \mathbb{C}^m$ s.t. $f(dom(f)) \subset Y$

Thm: φ: X-->Y rational map of aff. var.
 dom(φ) C X is open and dense in tariski topology
 dom(φ) = X ⇔ φ is a polynomial map (defined everywhere)

Dfn: $\phi: X \rightarrow Y$ is **dominant** if $\phi(dom \phi)$ is dense in Y

Prop: $\phi: X \longrightarrow Y$ dominant, $\psi: Y \longrightarrow Z$ arbitrary, then $\psi \circ \phi: X \longrightarrow Z$ is well defined.

 $\begin{array}{l} \lambda, \forall \ aff. \ var, \ \phi: x \dashrightarrow \forall \Rightarrow \ \phi^*: \mathbb{C}(\forall] \to \mathbb{C}(x), \ \phi^*: f \mapsto f \circ \phi. \end{array}$

Cor: $\emptyset: X \to Y$ dominant, induces home $\phi^{*}: \mathbb{C}(Y) \to \mathbb{C}(X)$.

Lem: $\phi: \mathbb{C}(Y) \rightarrow \mathbb{C}(X)$ homo of \mathbb{C} -alg. Then 3! dominant map $\phi: X - - \Rightarrow Y$ s.t. $\phi = \phi^*$.

Dfn: dominant $\phi: X \longrightarrow Y$ is *birational* if \exists dominant $\psi: Y \longrightarrow X$ s.t $\psi \circ \phi = id_X$, $\phi \circ \psi = id_Y$.

Cor: X, Y birational ⇔ C(X) ≥ C(Y) as c-algebras.

7.3 Projective Null stellensate

Dfn: an ideal IC C[xo,...,xn] is homogeneous if for every fEI, its homogeneous components also lie in I.

Lem: IC C[zo,...,zn] homo 🗇 I gen. by homo.

Dfn: I C C [$z_0, ..., z_n$] homo. The vanishing set is V(I) := $\{ P \in IP^n : h(P) = 0 \forall h \in I, h homo \}$ V(I) is called algebraic.

Rem: C[xo,...,xn] Noetherian ⇒ I fin. gen. N(I) = Zero locus of Some finite set of polynomials.

Dfn: $X \subset \mathbb{P}^n$ a subset. The *ideal of vanishing* is $I(X) := \{h \in \mathbb{C} [x_0, ..., x_n] \text{ homo } : h(P) = 0 \forall P \in X \}$

Thm : (Projective Null stellensate) I homo, then (1) $V(I) = \phi \iff \langle \pi_0, ..., \pi_n \rangle \subset \sqrt{I}$ (2) $V(I) \neq \phi \Rightarrow \sqrt{I} = I(V(I))$

Cor: 3 1:1 Correspondence { hom. radical ideals of C(x0,...,xn] not containing <x0,...,xn} { algebraic subsets of IPn }

Dfn: Alg. sub. $X \subset \mathbb{P}^n$ is *irreducible* if $X \neq X_1 \cup X_2 = X_1 \cdot X_2$ and subs. Called a *projective variety*.

DFn: X C IPⁿ closed if algebraic. → defines topology.

7.4. Birational Maps

Dfn: rational function $\phi: X \rightarrow C := \phi = \frac{f}{g}$, fige $C[x_0, ..., x_n]$ hom., deg(i) = deg(g), g $\notin I(X)$ • ϕ regular at $P \in X$ if $g(P) \neq 0$. • dom $(\phi) = \{P \in X : P \text{ regular}\}$

lem: l; standard open C Pⁿ. X∩Ui ≠Ø ⇒ C(X)≧ C(X∩Ui)

- Cor: XAUi = \$\$ \$ XAU; then XAU; and XAU; are birational as affine varieties.
- Dfn: Φ:X--> Y a morphism (poly map) if dom(Φ)=X.

Dfn: $\phi : X \longrightarrow Y$ dominant if $\phi(dom \phi)$ is dense in Y

Dfn: : : X -- > Y birational if] dom. 4: Y -- > X { & y of = idx birational if] dom. 4: Y -- > X { & y of = idy

Cor : $\mathbb{C}(X) \cong \mathbb{C}(Y) \iff X, Y$ birational.

Dfn: X proj. var is *rational* if X birat. to Pⁿ

Ex. smooth conic is rational

Ex. Legendre cubic rational $\Leftrightarrow a = 0, 1$.

8.1 Surfaces

Dfn: surface SC \mathbb{P}^3 of deg d := 200 Set of hom poly f(x,y,4,w) = 0, deg f = d.

Dfn: a projective transformation is an iso IP³→ IP³ given by acting an [x·y:z:w] by an invertible 4×4 matrix PGL4(C):= GL4(C)/C*

DFn: SCR3 is mooth if (32, 34, 34, 34) + 4 YPES

Dfn: $P \in S$ smooth. The tangent plane at P is: $\frac{\partial f}{\partial x}(P) x + \frac{\partial f}{\partial y}(P) y + \frac{\partial f}{\partial z}(P) + \frac{\partial f}{\partial w}(P) w = 0$

Dfn: line $C \mathbb{P}^3$ is an embedding $\mathbb{P}^1 C \mathbb{P}^3$ given by: $[\lambda: \mu] \mapsto [\chi, \lambda + \chi_2 \mu : y, \lambda + y_2 \mu : z, \lambda + z_2 \mu : w, \lambda + w_2 \mu]$ $[\chi_1 : y_1 : z_1 : w_1] \neq [\chi_2 : y_2 : z_2 : w_2]$

Prop: PES smooth, pElCS. Then l C tangent plane at P.

8.2. Quadric Surfaces

Dfn: quadric surface C IP³ is given by $Ax^{2} + Bxy + Cy^{2} + Dxz + Eyz + Fz^{2} + Gxw + Hyw + Izw + Jw^{2} = 0$ equivalently: (x, y, z, w) $\begin{pmatrix} A & B/z & D/z & G/z \\ B/z & C & E/z & H/z \\ D/z & E/z & F & I/z \\ G1/z & H/z & I/z & J \end{pmatrix}$ $\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}$ = 0

Thm: every quad. Surf. C P³ is projectively equive to either irreducible $\begin{cases} (3) x^2 + y^2 + 3^2 + w^2 = 0 \\ (3) x^2 + y^2 + 3^2 = 0 \end{cases}$ reducible $\begin{cases} (3) x^2 + y^2 = 0 \\ (4) x^2 = 0 \end{cases}$

Cor: Quad surf smooth 🗢 det(Q) = 0.

Dfn: $C \subset \mathbb{P}^2$ curve , f(x,y,z) = 0. A <u>cone</u> on C is a Surface in \mathbb{P}^3 defined by f(x,y,z) = 0. \rightarrow has singular point [0:0:0:1]

8.3 Segre Embedding

Dfn: Segre Embedding is the map $\phi: \mathbb{P}^{n} \times \mathbb{P}^{m} \to \mathbb{P}^{N}$: $([z_{0}: \dots : z_{n}], [y_{0}: \dots : y_{m}]) \mapsto [\{z_{i}; y_{j}\}_{i=0,\dots,n}, j=0,\dots,m}]$

N = (n+1)(m+1) -1

Prop: Segre is injective. Image of ϕ is variety given by Vanishing of 2x2 determinants of Matrix $[x_iy_j]$

Prop: product of proj. var is proj. var.

Prop: smooth quad surf $\stackrel{\sim}{=}$ $|P^1 \times |P^1|$ as proj. var.

8.4 Lines on Surfaces

SCIP³ irred quad surf.

- S smooth ⇒ ≥ P'×P', two rulings by lines
- S singular \Rightarrow S = Cone of Smooth conic. one ruling by lines.

Thm (Segre) If $d \gg 3$, then S contains at most (d-2)(11d-6) (finitely many) lines. e.g. d=4 contains ≤ 64 lines.

Thm (Cayley, Salmon): A smooth cubic surface in \mathbb{P}^3 contains exactly 27 lines.

Prop: SCIP³ irreducible cubic surface, PES singular. Then 3 LCS stpel.

Thm: S C IP³ irreducible singular surface. Then either

- S has infinitely many singular points
- S ≥ Cone on irreducible (ubic (one singular point)
- S contains fewer than 27 lines.

Thm (Castelnuovo) : Unirational Surface is rational

Thm: smooth Cubic surface is rational.

10.1: Tangent Spaces to Varieties

X:f(x1,...,xn) = 0 := irreducible hypersurface in Cn

Dfn: $P \in X$ is singular if $\frac{\partial f}{\partial x_1}(P) = \dots = \frac{\partial f}{\partial x_n}(P) = 0$ otherwise smooth. $P = (\alpha_1, \dots, \alpha_n) \in X$ smooth, tangent plane is the affine hyperplane $\frac{\partial f}{\partial x_1}(P)(x_1 - \alpha_1) + \dots + \frac{\partial f}{\partial x_n}(P)(x_n - \alpha_n) = 0$

Similarly for in 19".

Prop: $X : f(x_1,...,x_n) = 0$ irred. hypersurface in \mathbb{C}^n . The set of singular points is a proper alg. sub of X. The set of smooth points is dense.

 $X \subset \mathbb{C}^n$ aff. var , $I(X) = \langle f_1, ..., f_m \rangle P = [a_1, ..., a_n] \in X$.

Dfn : *langent space* $T_P X = affine subspace of Cⁿ given by$ $<math display="block">\frac{\partial f_i}{\partial x_1}(P)(x_1 - a_1) + \dots + \frac{\partial f_i}{\partial x_n}(P)(x_n - a_n) = 0$ $i = 1, \dots, m$

DFn: PEX Smooth if dim TpX = dimX.

If $f: X \rightarrow Y$ an iso of aff var, P smooth $\Leftrightarrow f(P)$ smooth

Prop: X = proj. var. Set of singular points of X is a proper algebraic subset.

10.2 Blowups and Curves

Dfn: Parametrize $\mathbb{C}^2 \times \mathbb{P}^1$ by $((\pi_1, y), [\alpha; \beta])$. The blowup of $\mathbb{C}^2 al$ (0,0) is the subset $Bl_{(0,0)} \mathbb{C}^2 \subset \mathbb{C}^2 \times \mathbb{P}^1$ defined by $\mathfrak{X}\beta = \alpha y$ Let $\Pi: Bl_{(0,0)} \rightarrow \mathbb{C}^2$ (proj. onto first factor), and denote by $\mathbb{E} = \pi^{-1}(0,0)$ the exceptional curve.

Rem: $E \cong \mathbb{P}^1$, Π is a morphism, Π restricts to an isomorphism $S/E \rightarrow \mathbb{C}^2/(0,0)$, in particular, Π is birational.

Dfn: Parametrize $\mathbb{P}^2 \times \mathbb{P}^1$ by $([\mathbb{Z}:y:z], [\alpha:\beta])$. The blowup of \mathbb{P}^2 at [0:0:1] is the subset $Bl_{(\alpha:0:1]} \subset \mathbb{P}^2 \times \mathbb{P}^1$ defined by $\mathbb{Z}\beta = \alpha Y$ Let $\Pi: Bl_{(0:0:1]} \rightarrow \mathbb{P}^2$ (projection) and $E = \Pi^{-1}([0:0:1])$ be called the exceptional curve.

Rem: $E \cong \mathbb{P}^1$, $\pi: Bl_{c_{0:0:1}} \to \mathbb{P}^2$ birational morphism. and $Bl_{c_{0:0:1}} \mathbb{P}^2 \setminus E \xrightarrow{\sim} \mathbb{P}^2 \setminus [0:0:1]$

Dfn: $C \subset \mathbb{P}^2$ a curve. Its *Strict transform* $\widetilde{C} \subset Bl_{[0:0:1]} \mathbb{P}^2$ is the <u>closure of $\pi^{-1}(C \setminus [0:0:1])$ </u>. If $[0:0:1] \in C$, then $\widehat{C} = Bl_{[0:0:1]} C$ is the *blowup* of C at [0:0:1]. Rem: blowup at smooth point is an iso, C = C.

idea: makes singular curves (eventually) smooth.

10.3 : Blowups and Surfaces

let $Z \subset \mathbb{C}^n$ be subvar, $I(z) = (g_0, ..., g_k)$

Dfn: blowup of C[°] with center at Z is the subvariety $B_{2}C^{C}C^{n} \times P^{k}$ defined by $U_{i}g_{j}(x) - u_{j}g_{i}(x) = 0$ for $i \neq j$ and $[u_{0} : ... : u_{k}] \in P^{k}$.

 $\Pi: Bl_{2} \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}: \pi^{-1}(2) \subset Bl_{2}\mathbb{C}^{n}$ is the exceptional hypersurface

Thm: The blowup of P² at 6 points, no 3 collinear and not all lying in a conic, is a cubic surface. Any cubic surface is obtained in this way.

10.4 : Birational Geometry

Thm : smooth projective curve has genus gro, and for each genus there are finitely many parameters describing a curve of genus g.

Rem: f: C1-->Cz rational map of smooth proj. curves. Then f is a morphism, and smooth birational curves are isomorphic.

Thm: $f: X \to Y$ rational morphism. Then there is a blowup $\Pi: \hat{X} \to X$ and a morphism $\hat{f}: \hat{X} \to Y$ s.t $\hat{f} = f \circ \Pi$.